Analytic interaction power analysis with covariates
Source:R/power_interaction_r2_covs.R
power_interaction_r2_covs.Rd
Analytic power analysis of an interaction model with covariates. Additional covariate x main effect interaction terms are additionally added.
Arguments
- cov.input
Output of 'power_interaction_r2_covs()'. Variable correlations and reliabilities are set by first modifying this list.
- N
Sample size. Must be a positive integer. Has no default value. Can be a single value or a vector of values.
- alpha
The alpha. At what p-value is the interaction deemed significant? Default is 0.05.
- detailed_results
Default is FALSE. Should detailed results be reported?
- cl
Number of clusters to use for running simulations in parallel. Default is NULL (i.e. not in parallel). Useful when running several thousand analyses at once.
Examples
ex1 = generate.interaction.cov.input(c.num=2)
ex1$correlations$r.y.x1x2 = c(0.1,0.2,0.3)
power_interaction_r2_covs(cov.input = ex1,N=100)
#> Performing 3 analyses
#> pwr r.y.x1 r.y.x2 r.y.c1 r.y.c2 r.y.x1x2 r.y.c1x1 r.y.c1x2 r.y.c2x1
#> 1 0.1566418 0 0 0 0 0.1 0 0 0
#> 2 0.4712674 0 0 0 0 0.2 0 0 0
#> 3 0.8082680 0 0 0 0 0.3 0 0 0
#> r.y.c2x2 r.x1.x2 r.x1.c1 r.x1.c2 r.x1.c1x2 r.x1.c2x2 r.x2.c1 r.x2.c2
#> 1 0 0 0 0 0 0 0 0
#> 2 0 0 0 0 0 0 0 0
#> 3 0 0 0 0 0 0 0 0
#> r.x2.c1x1 r.x2.c2x1 r.c1.c2 r.c1.x1x2 r.c1.c2x1 r.c1.c2x2 r.c2.x1x2 r.c2.c1x1
#> 1 0 0 0 0 0 0 0 0
#> 2 0 0 0 0 0 0 0 0
#> 3 0 0 0 0 0 0 0 0
#> r.c2.c1x2 rel.y rel.x1 rel.x2 rel.c1 rel.c2 alpha N
#> 1 0 1 1 1 1 1 0.05 100
#> 2 0 1 1 1 1 1 0.05 100
#> 3 0 1 1 1 1 1 0.05 100